(4R)^2=a^2+a^2

Simple and best practice solution for (4R)^2=a^2+a^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4R)^2=a^2+a^2 equation:



(4)^2=R^2+R^2
We move all terms to the left:
(4)^2-(R^2+R^2)=0
We add all the numbers together, and all the variables
-(R^2+R^2)+16=0
We get rid of parentheses
-R^2-R^2+16=0
We add all the numbers together, and all the variables
-2R^2+16=0
a = -2; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-2)·16
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-2}=\frac{0-8\sqrt{2}}{-4} =-\frac{8\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-1} $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-2}=\frac{0+8\sqrt{2}}{-4} =\frac{8\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-1} $

See similar equations:

| 5x+3(6x–4)=12 | | 2/3(6x-8)=-34 | | 2z×7=-5 | | 15x-10=-30 | | 9/4-4x-2=9 | | 288=4×3x | | 7=25–x | | 14148=x+.08x | | (4x-4)/3-(5x+2)/5+(x-3)/4=0 | | X+1/3-x-1/5=14 | | 9=-11+5x+x | | z+5=47 | | −5x+2x−9=−12 | | t(t-2)=-2 | | −3/x+14=8 | | 7t+2-2t-7=-4t-1+t | | -39=2(u-2)-7u | | 5/3x=3/2x-1 | | -3x+33=-55 | | 0.9u=-36 | | 5t+1=2t-0,2 | | (3x2+8x)=(7x2+3x) | | (4x-5)=(9x-10) | | x+4+4x+10(x-1)=22 | | -16=-1m | | 3p/6-8=15 | | 4p+4=21 | | -2(4y+30)=-68 | | 3(p+2)=- | | 0u-0u=2u | | F(-5)=3x^2-12 | | -8x+8=48 |

Equations solver categories